Portfolio Modeling with Heavy Tailed Random Vectors
نویسندگان
چکیده
Since the work of Mandelbrot in the 1960’s there has accumulated a great deal of empirical evidence for heavy tailed models in finance. In these models, the probability of a large fluctuation falls off like a power law. The generalized central limit theorem shows that these heavy-tailed fluctuations accumulate to a stable probability distribution. If the tails are not too heavy then the variance is finite and we find the familiar normal limit, a special case of stable distributions. Otherwise the limit is a nonnormal stable distribution, whose bell-shaped density may be skewed, and whose probability tails fall off like a power law. The most important model parameter for such distributions is the tail thickness α, which governs the rate at which the probability of large fluctuations diminishes. A smaller value of α means that the probability tails are fatter, implying more volatility. In fact, when α < 2 the theoretical variance is infinite. A portfolio can be modeled using random vectors, where each entry of the vector represents a different asset. The tail parameter α usually depends on the coordinate. The wrong coordinate system can mask variations in α, since the heaviest tail tends to dominate. A judicious choice of coordinate system is given by the eigenvectors of the sample covariance matrix. This isolates the heaviest tails, associated with the largest eigenvalues, and allows a more faithful representation of the dependence between assets.
منابع مشابه
Rare - Event , Heavy - Tailed Simulations Using Hazard Function Transformations , with Applications to Value - at - Risk
We develop an observation that a simulation method introduced recently for heavy-tailed stochastic simulation, namely hazard-rate twisting, is equivalent to doing exponential twisting on a transformed version of the heavy-tailed random-variable; the transforming function is the hazard function. Using this approach, the paper develops efficient methods for computing portfolio value-at-risk (VAR)...
متن کاملPortfolio Value-at-Risk with Heavy-Tailed Risk Factors
This paper develops efficient methods for computing portfolio value-at-risk (VAR) when the underlying risk factors have a heavy-tailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit a quadratic approximation to the portfolio loss, such as the delta-gamma approximation. In the fi...
متن کاملPortfolio Diversification under Local and Moderate Deviations from Power Laws
This paper analyzes portfolio diversification for nonlinear transformations of heavy-tailed risks. It is shown that diversification of a portfolio of convex functions of heavy-tailed risks increases the portfolio’s riskiness, if expectations of these risks are infinite. On the contrary, for concave functions of heavy-tailed risks with finite expectations, the stylized fact that diversification ...
متن کاملEffect of truncation on large deviations for heavy-tailed random vectors
This paper studies the effect of truncation on the large deviations behavior of the partial sum of a triangular array coming from a truncated power law model. Each row of the triangular array consists of i.i.d. random vectors, whose distribution matches a power law on a ball of radius going to infinity, and outside that it has a light-tailed modification. The random vectors are assumed to be R-...
متن کاملTail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors
Countless test statistics can be written as quadratic forms in certain random vectors, or ratios thereof. Consequently, their distribution has received considerable attention in the literature. Except for a few special cases, no closed-form expression for the cdf exists, and one resorts to numerical methods. Traditionally the problem is analyzed under the assumption of joint Gaussianity; the al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003